Corrosion Testing and Simulation of Key Components in Helicopter Connecting Structures

LI Jian, WU Yunzhang, WANG Qianxu, SHEN Jun, WANG Yanbing

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (11) : 49-58.

PDF(5234 KB)
PDF(5234 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (11) : 49-58. DOI: 10.7643/ issn.1672-9242.2025.11.005
Aviation and Aerospace Equipment

Corrosion Testing and Simulation of Key Components in Helicopter Connecting Structures

  • LI Jian1, WU Yunzhang1, WANG Qianxu1,*, SHEN Jun1, WANG Yanbing2
Author information +
History +

Abstract

The work aims to predict the development of corrosion damage and evaluate the calendar life of key components of helicopter structures through corrosion simulation tests. For key components of a certain type of helicopter structures, a three-dimensional physical model was established based on the structural form, material, and size conditions. Typical environmental conditions were selected for simulation calculations, and the simulation model was verified using actual corrosion damage data of the helicopter, corrosion damage data of natural exposure specimens, and data from laboratory environmental accelerated tests. The corrosion rate of 2A12 after surface anodizing treatment was 1/32 of that of the bare material, while the corrosion rate of 40CrNiMoA after cadmium plating treatment became 1/10 of that of the bare material. Different surface treatment processes of metals played a protective role to varying degrees for the bare material. When the damage tolerance of the bolt hole and the bolt was 0.15 mm and 0.2 mm, respectively, the bolt hole could support for 1.39 years, and the bolt could support for 1.23 years. The corrosion simulation results were basically consistent with the results of the corrosion accelerated test, verifying the effectiveness of the corrosion simulation model and laying a foundation for the simulation means of calendar life prediction of vehicle structure key components. In conclusion,taking the corrosion damage tolerance of major overhauls as the standard, and taking no corrosion and limited corrosion damage (based on actual damage) as the initial conditions, simulation calculations are conducted to analyze the corrosion rate, predict the corrosion development trend, and evaluate the potential for calendar life extension.

Key words

helicopter / structural critical components / corrosion simulation / corrosion damage tolerance / corrosion rate / calendar life

Cite this article

Download Citations
LI Jian, WU Yunzhang, WANG Qianxu, SHEN Jun, WANG Yanbing. Corrosion Testing and Simulation of Key Components in Helicopter Connecting Structures[J]. Equipment Environmental Engineering. 2025, 22(11): 49-58 https://doi.org/10.7643/ issn.1672-9242.2025.11.005

References

[1] 李健, 吴云章, 李伯舒, 等. 基于电化学阻抗的直升机涂层日历寿命评估方法[J]. 装备环境工程, 2017, 14(7): 79-82.
LI J, WU Y Z, LI B S, et al.Estimate Method for Calendar Life of Helicopter’s Coating Based on Electrochemical Impedance[J]. Equipment Environmental Engineering, 2017, 14(7): 79-82.
[2] 张福泽. 金属涂层的日历寿命计算公式和试验方法[J]. 航空学报, 2016, 37(2): 390-396.
ZHANG F Z.Calculation Formula and Test Method of Calendar Life of Metallic Coating[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 390-396.
[3] 张福泽. 全机日历寿命确定及相关问题[J]. 航空学报, 2024, 45(3): 229863.
ZHANG F Z.Determination of the Calendar Life of the Whole Aircraft and the Relevant Issues[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 229863.
[4] 何宇廷, 杜旭, 张腾, 等. 飞机结构寿命控制中的几个基本问题[J]. 空军工程大学学报(自然科学版), 2017, 18(3): 1-8.
HE Y T, DU X, ZHANG T, et al.A few Primary Elements in Controlling Aircraft Structural Service Life[J]. Journal of Air Force Engineering University (Natural Science Edition), 2017, 18(3): 1-8.
[5] 闫楚良. 中国飞机结构寿命可靠性评定技术的发展与展望[J]. 航空学报, 2022, 43(10): 527869.
YAN C L.Development and Prospect of Aircraft Structural Life Reliability Assessment Technology in China[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527869.
[6] 陈群志, 康献海, 刘健光, 等. 军用飞机腐蚀防护与日历寿命研究[J]. 中国表面工程, 2010, 23(4): 1-6.
CHEN Q Z, KANG X H, LIU J G, et al.Discussion about Military Aircraft Anti-Corrosion and Calendar Life Research[J]. China Surface Engineering, 2010, 23(4): 1-6.
[7] 刘成臣, 鲁国富, 张金奎, 等. 2A12与30CrMnSiA在相同海洋大气环境中的加速环境谱差异[J]. 腐蚀与防护, 2015, 36(7): 609-613.
LIU C C, LU G F, ZHANG J K, et al.Differences between Environment Spectrums of 2A12 and 30CrMnSiA in the Same Ocean Atmospheric Environment[J]. Corrosion & Protection, 2015, 36(7): 609-613.
[8] SHEKHTER A, CRAWFORD B R, LOADER C, et al.The Effect of Pitting Corrosion on the Safe-Life Prediction of the Royal Australian Air Force P-3C Orion Aircraft[J]. Engineering Failure Analysis, 2015, 55: 193-207.
[9] 刘文珽, 贺小帆. 飞机结构腐蚀/老化控制与日历延寿技术[M]. 北京: 国防工业出版社, 2010.
LIU W T, HE X F.Corrosion/Aging Control of Aircraft Structure and Calendar Life Extension Technology[M]. Beijing: National Defense Industry Press, 2010.
[10] CHOPARD B, DROZ M.Cellular Automata Modeling of Physical Systems[M]. Cambridge: Cambridge University Press, 1998.
[11] 唐肇蔚. 镁合金和稀土镁合金腐蚀性能研究[J]. 广州化工, 2015, 43(15): 116-118.
TANG Z W.Study of Corrosion Performance on Magnesium Alloy and Rare Earth Magnesium Alloy[J]. Guangzhou Chemical Industry, 2015, 43(15): 116-118.
[12] 陈亚丰. 结构设计对镁合金零部件腐蚀性能的研究和仿真[D]. 上海: 上海交通大学, 2015.
CHEN Y F.Research and Simulation of Corrosion Performance of Magnesium Alloy Parts by Structural Design[D]. Shanghai: Shanghai Jiao Tong University, 2015.
[13] 焦一帆, 王守仁, 王高琦, 等. AP2铝硅合金超疏水表面的制备和耐腐蚀性研究[J]. 表面技术, 2024, 53(8): 191-201.
JIAO Y F, WANG S R, WANG G Q, et al.Preparation and Corrosion Resistance of Aluminum-Silicon Alloy Superhydrophobic Surface[J]. Surface Technology, 2024, 53(8): 191-201.
[14] 张福泽. 求飞机结构真实腐蚀容限的原理和方法[J]. 航空学报, 2021, 42(5): 524457.
ZHANG F Z.Principle and Method of Calculating Real Corrosion Tolerance Value of Aircraft Struture[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524457.
[15] 李健, 刘帅帅, 吴云章, 等. 某型直升机机体结构关键件涂层耐久性评估[J]. 装备环境工程, 2023, 20(7): 49-55.
LIJ, LIUS S, WU Y Z, et al.Durability Evaluation of Coating for Key Components of Helicopter Fuselage Structure[J]. Equipment Environmental Engineering, 2023, 20(7): 49-55.
[16] 王海涛, 韩恩厚. 飞机结构腐蚀数值仿真模拟的研究进展[J]. 装备环境工程, 2020, 17(2): 61-65.
WANG H T, HAN E H.Research Progress of Numerical Simulation on Corrosion of Aircraft Structure[J]. Equipment Environmental Engineering, 2020, 17(2): 61-65.
[17] 张泰峰, 张勇, 黄海亮, 等. 某型飞机结构件局部腐蚀仿真与试验验证[J]. 腐蚀与防护, 2019, 40(7): 523-529.
ZHANG T F, ZHANG Y, HUANG H L, et al.Simulation and Experimental Verification of Localized Corrosion of an Aircraft Structure[J]. Corrosion & Protection, 2019, 40(7): 523-529.
[18] 孙强. 模拟海洋环境下7B04铝合金电偶腐蚀预测及验证[J]. 失效分析与预防, 2018, 13(4): 203-208.
SUN Q.Prediction and Verification of Galvanic Corrosion of 7B04 Aluminum Alloy under Simulated Marine Environment[J]. Failure Analysis and Prevention, 2018, 13(4): 203-208.
[19] 陈跃良, 黄海亮, 张勇, 等. 不同液膜厚度下电偶腐蚀当量折算研究[J]. 材料导报, 2018, 32(9): 1571-1576.
CHEN Y L, HUANG H L, ZHANG Y, et al.Study on Equivalent Conversion of Galvanic Corrosion under Different Liquid Film Thickness[J]. Materials Review, 2018, 32(9): 1571-1576.
[20] 王晨光, 陈跃良, 张勇, 等. 7B04铝合金在模拟海洋大气环境下的腐蚀行为[J]. 航空材料学报, 2017, 37(1): 59-64.
WANG C G, CHEN Y L, ZHANG Y, et al.Corrosion Behavior of 7B04 Al-Alloy in Simulated Marine Atmospheric Environment[J]. Journal of Aeronautical Materials, 2017, 37(1): 59-64.
[21] YIN L T, JIN Y, LEYGRAF C, et al.A FEM Model for Investigation of Micro-Galvanic Corrosion of Al Alloys and Effects of Deposition of Corrosion Products[J]. Electrochimica Acta, 2016, 192: 310-318.
[22] DEROSE J A.Aluminium Alloy Corrosion of AircraftStructures:Modeling and Simulation[M]. Ashurst: WIT Press, 2013.
[23] 崔艳雨, 赵沅沅. 基于元胞自动机法的铝合金腐蚀行为模拟[J]. 腐蚀与防护, 2018, 39(10): 794-799.
CUI Y Y, ZHAO Y Y.Simulation of Aluminum Alloy Corrosion Behavior Based on Cellular Automaton Method[J]. Corrosion & Protection, 2018, 39(10): 794-799.
[24] 陈跃良, 陈亮, 卞贵学, 等. 先进舰载战斗机腐蚀防护控制与日历寿命设计[J]. 航空学报, 2021, 42(8): 525786.
CHEN Y L, CHEN L, BIAN G X, et al.Corrosion Protection Control and Calendar Life Design of Advanced Carrier-Based Aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525786.
[25] 卞贵学, 陈跃良, 张勇, 等. 基于电偶腐蚀仿真的铝/钛合金在不同浓度酸性NaCl溶液中与水介质中的当量折算系数[J]. 材料导报, 2019, 33(16): 2746-2752.
BIAN G X, CHEN Y L, ZHANG Y, et al.Equivalent Conversion Coefficient of Aluminum/Titanium Alloy between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746-2752.
[26] DUDDU R, KOTA N, QIDWAI S M.An Extended Finite Element Method Based Approach for Modeling Crevice and Pitting Corrosion[J]. Journal of Applied Mechanics, 2016, 83(8): 081003.
[27] 国家机械工业局. 金属材料实验室均匀腐蚀全浸试验方法: JB/T 7901—1999[S]. 北京: 中国标准出版社, 1999.
State Administration of Machinery Industry. Metals Materials-Uniform Corrosion-Methods of Laboratory Immersion Testing: JB/T 7901—1999[S]. Beijing: China Standard Press, 1999.
PDF(5234 KB)

Accesses

Citation

Detail

Sections
Recommended

/